

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAIS

LILIANE FERREIRA ARAÚJO DE ALMADA

CRISTALIZAÇÃO DE FLOR DE SAL EM SOLUÇÕES HIPERSALINAS NATURAIS INDUZIDA POR EVAPORAÇÃO EM DIFERENTES CONDIÇÕES DE UMIDADE E PLASMA ATMOSFÉRICO

Orientador: Prof. Dr. Clodomiro Alves Junior

Co-orientador: Prof Dr. Francisco Edson Nogueira Fraga

MOSSORÓ-RN 2020

Cristalização na superfície de salmoura por descarga elétrica (JAIRO *et al.*, 2017)

2. OBJETIVOS

2.1 Objetivo Geral

Investigar a produção de flor de sal induzida por dois diferentes caminhos: (a) controlando a umidade relativa do ar durante a evaporação; (b) alterando a distribuição de íons por descarga elétrica.

2.2 Objetivos Específicos

- Verificar propriedades físicas e químicas da solução durante a evaporação nas diferentes condições de umidade;
- Avaliar a massa, morfologia e composição iônica dos cristais formados com relação ao tempo de evaporação e condições de umidade;

2. OBJETIVOS

2.2 Objetivos Específicos

- Determinar as microestruturas formadas e associar as fases à densidade da solução e condições de umidade;
- Estudar a influência de uma descarga de plasma atmosférico na cristalização em gotas da solução hipersalina e no crescimento dos cristais durante a secagem da gota;
- Caracterizar os cristais formados através do tratamento por plasma quanto à morfologia, composição química e microestrutura;

4.1 Experimento 1

- Amostras (1,215g/cm³/26 °Bé) -Salina pertencente ao grupo F. Souto Ind, localizada em Grossos-RN;
- Recipiente: 285 mm x 176 mm x 97 mm, material polipropileno;
- Termopares posicionados a T₀, T₁ e T₂ e medidos através de multímetro;
- Umidificador ultrassônico Reli On, modelo HQ-UH811E, e verificada por meio de um termohigrômetro digital Kasvi, modelo K29-5070H;
- Lupa estereoscópica Nikon, modelo MSZ 18, acoplada a uma câmera Nikon, modelo DS-F12.

Figura 1. Esquema da montagem do experimento 1.

4.2 Experimento 2 (etapa1)

- 1 gota (50µL)/s (26 e 28°Be);
- 11,5kV e frequência de 450Hz (ajuste por osciloscópio);
- agulha de aço inoxidável de 1,7mm;
- Tubo de vidro (10mm);
- Bureta (100mL);
- Funil de Buchner, 90mm;
- Kitassato de 500 mL;
- Papel filtro qualitativo;
- Bomba aspiradora;
- Secagem em estufa 40°C (6h);
- Remoção de material com espátula.

Figura 3. Aparato experimental utilizado para a descarga de plasma gota a gota da solução.

4.2 Experimento 2 (etapa2)

- Dimensões da lâmina 17x25mm;
- Lupa estereoscópica (50 min);
- Espectros ópticos;

Figura 4. Esquema da montagem no segundo momento do experimento.

4.3 Experimento 3

Figura 5. Esquema da montagem no segundo momento do experimento.

10

4.4 Análises realizadas

Análises Químicas	Espectrometria de	Espectrometria de	Método de Mohr
(400mg/L)	emissão atômica	absorção atômica	
Morfologia e Microestrura	MEV Lupa estereoscópica (<i>NIS elements Br</i>)	DRX (40kV-30mA) y Image J (20-80°) Plus v	<i>K'pert Highscore</i> 2.3.0.5, da PANalytical
OES	Fibra óptica de sílica	Ocean Optics USB Toshiba TCD	01304AP NIST
	0,6 mm	4000 UV-VIS 200 a 100	00 nm Pearse e Gaydon (1950)

5.1 Experimento 1

5.1.1 Mecanismo da cristalização na superfície da solução

5. RESULTADOS E DISCUSSÃO 5.1 Experimento 1 5.1.2 Propriedades da solução Figura 10. Variação de densidade e concentração da solução durante sua evaporação em diferentes condições de umidade. durante a evaporação 1,235 1,2325/27,95 28,37 UR 50% UR 70% (f) 1,230 (f) 1,27 1,27 1 H_2O 27,79 Densidade (°Bé) -27,21 1,2153/25,94 Concentração 26,63 Fase líquida Densidade 1,215 26,64 1,210 -25,46 424,70 420 Concentração total dos sais (g /L de H_2O) 354,19 Fase sólida 399 378 357 Concentração Fase líquida 336 Densidade 315 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 0 14 Tempo de evaporação (h)

5.1 Experimento 1

5.1.2 Propriedades da solução durante a evaporação

Figura 11. Taxa de evaporação sob as duas condições de umidade.

5.1 Experimento 1

5.1 Experimento 1

5.1.3 Massa e morfologia dos cristais obtidos

- Aumento de ~ 130% na massa após primeira coleta;
- Total: 199,261g/170,34g
- Redução de 558 a 165 µm (50%);
- Se mantém ~ 560 μm (70%);
- Supersaturação mais rápida -> maior número de núcleos;
- Barreira para a formação (70%);
- Supersaturação reduzida -> menor número de núcleos.

Figura 13. Comportamento da massa e tamanho médio dos cristais durante a evaporação

5. RESULTADOS E DISCUSSÃO 5.1 Experimento 1

5.1.3 Massa e morfologia dos cristais obtidos

Figura 14. MEV dos cristais obtidos com umidade de 50% a) em t = 4h, ampliação (30x), b) em t = 61h, ampliação (30x), c) precipitado final, ampliação (300x), e com umidade 70% d) t = 4h, ampliação (30x), e) t = 61, ampliação (30x), e f) precipitado final, ampliação (60x).

Figura 15. Morfologias ampliadas dos cristais obtidos, a) hopper (190x) e b) cúbicos ocos (160x), c) prismáticos (60x) e d) aglomerado de cúbicos lisos (80x).

18

5.1 Experimento 1

5.1.4 Composição química dos materiais durante a evaporação

Figura 16. Composição iônica da flor de sal e da salmoura durante o período de evaporação. a) Mg²⁺, b) Ca²⁺, c) Na⁺.

5. RESULTADOS E DISCUSSÃO 5.1 Experimento 1

5.1.4 Composição química dos materiais durante a evaporação

Figura 17. Composição iônica da flor de sal e da salmoura durante o período de evaporação. d) Cl⁻, e) K⁺ e f) SO₄²⁻.

5.1 Experimento 1

5.1.4 Composição química dos materiais durante a evaporação

Tabela 2. Tabela contendo valores das concentrações de íons em uma proporção de 400mg/L

Concentração de íons na Flor de sal (mg/L)										
D (°Bé)	D (g/cm3)	Mg ²⁺	Ca ²⁺	Na⁺	K+	Cl-	SO ₄ ²⁻			
26,01 ¹	1,217 ¹	0,233 ± 0,008	4,424 ± 0,333	154,45 ± 0,577	1,619 ± 0,057	238,3 ± 1,95	0,994 ± 0,029			
25,95 ²	1,217 ²	0,244 ± 0,002	4,639 ± 0,124	159,12 ± 5,192	0,492 ± 0,02	224,3 ± 1,77	11,13 ± 0,059			
28,02 ¹	1,232 ¹	0,302 ± 0,012	1,939 ± 0,056	153,78 ± 0,577	0,625 ± 0,115	217,08 ± 1,02	26,34 ± 1,010			
27,97 ²	1,231 ²	0,236 ± 0,032	1,487 ± 0,134	149,45 ± 2,309	0,824 ± 0,057	218,18 ± 5,12	29,834 ± 5,5			
Concentração de íons na Solução (mg/L)										
26,01 ¹	1,217 ¹	2,281 ± 0,148	4,374 ± 0,577	100,45 ±4,041	6,095 ± 0,230	281,35 ± 2,74	5,44 ± 1,71			
25,95 ²	1,217 ²	2,236 ± 0,121	4,206 ± 0,123	102,12 ±1,527	5,067 ± 0,345	277,29 ±7,06	9,19 ± 3,002			
28,02 ¹	1,232 ¹	3,89 ± 0,09	4,123 ± 0,359	68,78 ±2,887	8,383 ± 0,304	294,96 ± 4,04	19,85 ± 1,42			
27,97 ²	1,231 ²	3,733 ± 0,136	4,617 ± 0,180	66,12 ± 3,464	6,294 ± 1,15	296,1 ± 2,05	23,13 ± 3,04			
UR %		Concentração de íons no sedimentado ao final do experimento (mg/L)								
50%		0,586 ± 0,008	5,57 ± 0,16	141,78 ± 1,15	1,71 ± 0,057	181,24 ± 2,12	69,11 ± 2,3			
70%		0,514 ± 0,009	5,78 ± 0,05	143,45 ± 4,04	1,58 ± 0,017	182,48 ± 1,23	66,64 ± 3,8			
¹ Refere-se a umidade de 50%. ² Refere-se à umidade de 70%. D refere-se à densidade da solução.										

5.1 Experimento 1

5.1.5 Difratogramas das amostras

Penetração dos feixes de raios X em camadas muito abaixo da amostra (KADUK, 1994).

Figura 19. Fases identificadas através da difração de raios X.

5.2 Experimento 2

5.2.1 Avaliação da massa do filtrado

Figura 21. Massa de partículas suspensas em 100 mL de salmoura sem tratamento e com

5. RESULTADOS E DISCUSSÃO 5.2 Experimento 2

5.2.2 Composição química do filtrado

Figura 22. Composição das partículas filtradas com e sem tratamento por plasma. a) Na⁺, b) Cl⁻, c) SO₄²⁻, d) Ca²⁺, e) K⁺ e f) Mg²⁺.

25

5. RESULTADOS E DISCUSSÃO 5.2 Experimento 2

5.2.3Análise morfológica do filtrado

Figura 23. Micrografias das amostras filtradas obtidas da solução de a) 26°Bé (500x), b) 26 °Bé após tratamento (550x), c) 28°Bé (500x), d) 28 °Bé após tratamento (550x).

Figura 24. Fotografias com ampliação de 10x das superfícies de gotas da solução após 50 min de secagem a) 26°Bé sem tratamento, b) 26°Bé após tratamento, c) 28°Bé sem tratamento e d) 28°Bé após tratamento.

5. RESULTADOS E DISCUSSÃO 5.2 Experimento 2

5.2.4 Análise microestrutural

Figura 25. Difratogramas em cascata dos sólidos obtidos após filtragem nas duas condições de densidade com (T) e sem tratamento por plasma (ST)

Figura 26. Difratograma das amostras em offset evidenciando os demais picos identificados. . NaCl(220) Na 0,24 Na,50 NaC(22) NaC(22) NaC(400) NaC(331) 28 T Intensidade Normalizada (u.a) 28 ST 26 T 26 ST 20 30 40 50 60 70 80 27 **2**0

5. RESULTADOS E DISCUSSÃO 5.2 Experimento 25.2.5 OES do plasma

Figura 27. Coloração do plasma durante o tratamento a) antes da incrustação e b) após a incrustação.

Figura 28. Espectros de emissão óptica do plasma utilizado com incrustação (CI) e sem incrustação (SI).

5. RESULTADOS E DISCUSSÃO 5.3 Experimento 3

Figura 29. Crescimento dos cristais durante a secagem de uma gota de solução hipersalina sem tratamento por plasma, ampliação em lupa de 30x.

5. RESULTADOS E DISCUSSÃO 5.3 Experimento 3

Figura 31. Cristalização na superfície por plasma a) aglomerado de cristais formado após 18s de aplicação da descarga (10x), b) detalhes da dinâmica da cristalização (30x), c) após 108s (30x) e d) após 180s (10x).

a) Cristais Cristais Plasma Agulha 6000 μm Gota d) 27% 6000 μm 2000 um

Figura 32. a) Modelo do crescimento do aglomerado de cristais na superfície da gota em função do tempo de aplicação do plasma de descarga atmosférica e b) MEV do aglomerado de cristais formados na superfície da gota após 180 s da aplicação do plasma (500x).

5.3 Experimento 3

Figura 33. Dinâmica da cristalização no momento a) anterior a descarga, b) imediatamente à aplicação da descarga e c) após 10 s de aplicação da descarga.

6. CONCLUSÕES FINAIS

- Produção de Flor de sal foi maior para condição de menor umidade (~ 100g/L), em relação a maior (85g/L) com produção de sedimentado (41-39g/L);
- Maior tamanho para os cristais produzidos em 70% de umidade, que apresentaram predominância de morfologia *hopper;*
- Variações significativas de propriedades (densidade, concentração e condutividade) acompanhadas de alterações na composição química devido as precipitações e evaporação de H₂O;
- Influência da umidade na concentração de potássio na solução, sendo maior para a condição de maior umidade. Aumento de SO₄²⁻, na flor de sal foi acompanhado de reduções na concentração de Cl[,] enquanto o sedimentado apresentou maiores teores de SO₄²⁻, K⁺, Ca²⁺ e Mg²⁺.

6. CONCLUSÕES FINAIS

- Halita, com picos preferenciais no plano (200), redução na intensidade relativa ao plano (400) e intensidade dos picos de Na_{0,7}K_{0,3}Cl com o aumento da densidade, e picos de Na₂SO₄ cuja a intensidade reduziu com o aumento da umidade. Sedimentados apresentaram mais fases contendo SO₄, Ca e Mg;
- Plasma gerou partículas, tamanhos entre 2 e 8 μm, com composição química diferenciada e padrão de crescimento cúbico liso;
- Halita (200), com cristalinidade maior para a maior densidade e reduziu com os tratamentos. Fases de gipsita e sulfato de sódio;
- Deformação da superfície do líquido, cristalização abrupta com incorporação de íons das diferentes espécies químicas presentes na solução.

REFERÊNCIAS

BARAUNA, Jairo Breno Francisco de Oliveira. *et al.* Sodium Chloride Crystallization by Electric Discharge in Brine. **Materials Research**, v. 20, n. 2, p. 215–220, 2017. Disponível em: .">http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800215&lng=en&tlng=en>.

DELLWIG, Louis F. Robert Evans. Depositional Processes in Salina Salt of Michigan. **AAPG Bulletin**, v. 53, n. 2, p. 83–110, 1969. Disponível em: http://search.datapages.com/data/doi/10.1306/5D25C80D-16C1-11D7-8645000102C1865D.

DESARNAUD, Julie. *et al.* Hopper Growth of Salt Crystals. **The Journal of Physical Chemistry Letters**, v. 9, n. 11, p. 2961–2966, 2018. Disponível em: https://pubs.acs.org/doi/10.1021/acs.jpclett.8b01082>.

FONTANA, Pietro; PETTIT, Donald; CRISTOFORETTI, Samantha. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity. **Journal of Crystal Growth**, v.428, p.80–85, 2015. Disponível em: http://dx.doi.org/10.1016/j.jcrysgro.2015.07.026>.

GEERTMAN, R. M. Sodium Chloride: Crystallization. **Encyclopedia of Separation Science**. Elsevier, 2000. p. 4127–4134.

REFERÊNCIAS

KADUK, J. A. Modern powder diffraction. Reviews in mineralogy. **Acta Crystallographica Section A Foundations of Crystallography**, v. 50, n. 2, p. 259–259, 1994. Disponível em: http://scripts.iucr.org/cgibin/paper?S0108767393012450.

KISS, Janice. A fina flor do sal. **Revista Globo Rural**, 2011. Disponível em: http://revistagloborural.globo.com/Revista/Common/0,,EMI208536-18281,00-A+FINA+FLOR+DO+SAL.html.

KURAKE, Naoyuki. *et al.* Synthesis of calcium oxalate crystals in culture medium irradiated with nonequilibrium atmospheric-pressure plasma. **Applied Physics Express**, v. 9, n. 9, p. 096201, 2016. Disponível em: 0786/9/i=9/a=096201?key=crossref.d794a0d26548dc53aa1f3a54456fb97e>.

LAZAR, B. *et al*. The carbonate system in hypersaline solutions: Alkalinity and CaCO 3 solubility of evaporated seawater. **Limnology and Oceanography**, v. 28, n. 5, p. 978–986, 1983. Disponível em: http://doi.wiley.com/10.4319/lo.1983.28.5.0978>.

REFERÊNCIAS

LIU, Wenzheng. *et al.* Exploration to generate atmospheric pressure glow discharge plasma in air. **Plasma Science and Technology**, v. 20, n. 3, p. 035401, 2018. Disponível em: http://stacks.iop.org/1009-0630/20/i=3/a=035401?key=crossref.973c4a07e1a9893a4ecb62bc74c327ea.

MCCAFFREY, M. A.; LAZAR, B.; HOLLAND, H. D. The evaporation path of seawater and the coprecipitation of Br-and K+with halite. **Journal of Sedimentary Petrology**, v. 57, n. 5, p. 928–937, 1987.

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E ENGENHARIA DE MATERIAIS

LILIANE FERREIRA ARAÚJO DE ALMADA

CRISTALIZAÇÃO DE FLOR DE SAL EM SOLUÇÕES HIPERSALINAS NATURAIS INDUZIDA POR EVAPORAÇÃO EM DIFERENTES CONDIÇÕES DE UMIDADE E PLASMA ATMOSFÉRICO

Orientador: Prof. Dr. Clodomiro Alves Junior

Co-orientador: Prof Dr. Francisco Edson Nogueira Fraga

MOSSORÓ-RN 2020